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A NUMERICAL STUDY OF TRANSIENT NATURAL 
CONVECTION ABOUT A CORRUGATED PLATE 

EMBEDDED IN AN ENCLOSED POROUS MEDIUM 
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Department of Industrial Design, National Cheng-Kung University, Tainan, Taiwan 70101, R.O.C. 

ABSTRACT 
The problems of transient natural convection from a corrugated plate embedded in an enclosed porous 
medium is studied numerically. The non-Darcian effects as well as the acceleration terms are taken into 
consideration in the momentum equation. The governing equations in terms of vorticity, stream function 
and temperature are expressed in a body-fitted coordinates system, which were solved numerically by the 
finite difference method. Results are presented in terms of streamlines and isotherms, local and average 
Nusselt numbers, with Darcy-Rayleigh number ranging from 0 to 1000, and Darcy number from 10 -4 to 
10-1, for several aspect ratios of the cavity and plate positions. The flow and heat transfer characteristics 
for a corrugated plate and a flat plate and the numerical results solved with four different mathematical 
models are also compared. 
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INTRODUCTION 

A great deal of attention has been given to the study of natural convection in enclosures filled 
with a porous medium due to its widespread engineering applications, including geothermal 
systems, underground spread of pollutants, heat exchangers, storage of nuclear waste materials, 
solification of castings and thermal insulation and electronic cooling. In all these areas, both 
experimental and theoretical works have been undertaken to determine the influence of important 
parameters such as Darcy number, Rayleigh number, Prandtl number, cavity aspect ratio and 
conductivity ratio between solid and fluid phases. 

Most of the early studies were based on Darcy's law with the assumptions of a constant 
porosity medium1-3. But, Tong et al.4 studied the problem of natural convection in vertical 
porous enclosures, based on Darcy's law and boundary layer approximations, and found that 
pure Darcy analysis is applicable only when RaDa2/A<O(10-4). Beckermann et al.5,6 studied 
the inertia and viscous effects by using the Brinkman-Forchheimer-extended Darcy equations, 
and found that at high Darcy numbers the inertia and viscous terms must be included 
simultaneously to obtain realistic predictions of the Nusselt number. Georgiadis and Catton7 

also used Brinkman's and Forchheimer's extensions of Darcy's law to study non-Darcian free 
convective motion in an infinite vertical porous slot and found that both effects are important 
at high Darcy numbers. 

Experimental investigations on natural convection in a confined rectangular cavity packed 
with porous medium, were carried out by Seki et al.8 as well as Jonsson et al.9. It has been 
concluded that the Nusselt number no longer increases with increasing Prandtl number and it 
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NOMENCLATURE 

A aspect ratio of the cavity, W/H 
B constant defined in (21) 
C Forchheimer coefficient 
C1 distance between the fiat surface and the valley 

of the corrugation, = C2 

C2 thickness of the plate 
Cp specific heat at constant pressure 
D constant defined in (21) 
Da Darcy number, K/H2

2 
E consant defined in (21) 
F function defined in (15,) and (16) 
f quantity defined in (28) 
g gravitational acceleration 
H height of cavity 
H1 distance between the top of the heated plate and 

the top of the cavity 
H2 length of plate 
H3 distance between the bottom of the heated plate 

and the bottom of the cavity 
J Jacobian of the coordinate transformation 

defined in (19) 
k thermal conductivity 
K permeability 
m number of iteration 
n normal direction 
Nu local Nusselt number defined in (29) 

mean Nusselt number defined in (30) 
Pr Prandtl number of a saturated porous medium 
p* dimensional pressure 
P, Q coordinate control functions 
R radius ratio for a concentric porous annulus 
Ra Rayleigh number, gβf(Th* - Tc*)H3

2/vαe 

Ram Darcy-Rayleigh number, gβfKH2(Th* - Tc*)/vαe 
T*, T dimensional and dimensionless temperature 

defined in (5) 
t*, t dimensional and dimensionless time defined in 

(5) 
u*, u dimensional and dimensionless Darcian 

velocities in the x-direction defined in (5) 
v*, v dimensional and dimensionless Darcian 

velocities in the y-direction defined in (5) 
w*, w dimensional and dimensionless absolute 

velocities 
x*, x dimensional and dimensionless coordinates in 

the horizontal direction defined in (5) 
y*, y dimensional and dimensionless coordinates in 

the vertical direction defined in (5) 

Creek symbols 
a, β, y transformation factors given in (19) 
ae effective thermal diffusivity, ke/ρfCpf 
βf thermal expension coefficient 
μ dynamic viscosity 
v kinematic viscosity 
ρ density 
ε porosity 
θ corrugated angle 
ξ, η dimensionless transformed coordinates 
σ heat capacity ratio 
Ψ dimensionless stream function defined in (9) 
Ω dimensionless vorticity defined in (9) 
ψ, ф functions defined in (20) 

Laplace operator in the (x,y) coordinates 
Laplace operator in the transformed coordinates 

can be assumed to be infinite as the effective Prandtl number becomes greater than 0.1. The 
problem of natural convective heat transfer across a vertical impermeable partition imbedded 
in porous medium has been studied by Bejan et al. 10. Another numerical investigation of the 
effect of internal flow obstructions on heat transfer through a 2-D porous layer heated from the 
side has been performed by Bejan11. It was found that a vertical diathermal partition reduces, 
by about 50%, the heat transfer rate in a convection dominated porous layer and the effect of 
horizontal partitions depends on the heat transfer mechanism. 

The problem of heat losses from buried pipes has been studied by some authors. Thiyagarajan 
et al.12, Bau et al.13 and Difelice et al.14 have assumed that heat losses may be calculated using 
a conduction model. Thermal convection in the porous medium around buried pipes has been 
taken into account in experimental and theoretical works by Schrock et al.15, Fernandez et al.16, 
Farouk et al.17, Bau28, Himasekhar et al.19 and Fand et al.20. Another numerical and experimental 
investigation of the problem of natural convection associated with a cylindrical heat source 
embedded in a box has been performed by Himasekhar and Bau21. 

To our knowledge no investigations aimed at studying the transient natural convection of a 
corrugated plate embedded in an enclosed porous medium have been published. In this work, 
the problem of transient natural convection about a heated corrugated plate embedded in an 
enclosed porous medium, which can be applied to casting, is studied. Due to the fact that both 
the inertia and boundary (viscous) effects are important for a large Darcy number, the extended 
Brinkman-Forchheimer-Darcy equations are used for the momentum equations. A finite 
difference solution of the governing equations is obtained in terms of stream function, vorticity, 
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and temperature in a body-fitted coordinate system. The effects of Darcy number, Darcy-Rayleigh 
number, aspect ratio of the enclosure and plate position on the flow structure and heat transfer 
chacteristics are discussed. The results for a corrugated plate and a flat plate are compared. In 
addition, the numerical results obtained with four different models are also compared in order 
to investigate the inertia and boundary (viscous) effects. 

MATHEMATICAL FORMULATION 

Consider a corrugated plate of length H2, thickness C2, and corrugated angle 9 embedded in 
an enclosed porous medium a shown in Figure 1. The corrugated plate is kept at a uniform 
temperature Th* while the wall temperature of the cavity is kept at room temperature Tc* where 
Th* > Tc*. For a mathematical formulation of the problem, it is assumed that (a) the fluid motion 
and temperature distribution in the porous medium are two-dimensional, (b) the fluid is 
incompressible, (c) frictional heating is negligible, (d) the thermophysical properties of the fluid 
are constant, (e) the Boussinesq approximation is applicable, (f) the porous medium is 
homogeneous and isotropic and (g) the fluid is in local thermal equilibrium with the porous 
matrix. With these assumptions, the governing equations for the conservation of mass, momentum 
and energy in cartesian coordinates for the problem of transient natural convection in a constant 
porosity medium are: 

(1) 

(2) 

(3) 

(4) 

where, u* and v* are the Darcian velocities in the x* and y* directions; w* is the absolute 
velocity given by w* = (u*2 + u*2)1/2; p* is the volumetric average pressure; ρf, μf, and βf are 
the density, viscosity, and thermal expansion coefficient of the fluid; ε and K are the porosity 
and permeability of the porous medium which are assumed to be constant; g is the gravitational 
acceleration; C = 0.55 is the Forchheimer coefficient22; ae is the equivalent thermal diffusivity of 
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the saturated porous medium defined as αe = ke/ρfCpf with ke denoting the stagnant thermal 
conductivity of the saturated porous medium; and σ = [ερfCpf+(1 - ε)ρsCps]/(ρfCpf) with Cpf and 
Cps being the specific heats of the fluid phase and the solid phase at constant pressure. 

We now introduce the following dimensionless variables: 

(5) 

where H2 is the length of the plate. The resulting nondimensional equations for the stream 
function, vorticity, and temperature are given by: 

(6) 

(7) 

(8) 
where the dimensionless stream function and vorticity are defined as: 

(9) 

In (7) Pr = v/αe is the Prandtl number, Da = K/H2
2 is the Darcy number, Ra = gβf(Th* - Tc*)H3

2/vαe 
is the Rayleigh number. 

Initially, the fluid in the porous medium is stationary and at a uniform temperature 7c*. Thus, 
the dimensionless initial conditions are: 

(10) 
The dimensionless boundary conditions on the plate are: 

(11) 
on the vertical walls of the cavity are: 

(12a) 
and on the horizontal walls of the cavity are: 

(12b) 

NUMERICAL PROCEDURES 

The governing equations with the initial and boundary conditions in the cartesian coordinates 
(x,y) are transformed into the body-fitted coordinates (<ξ,η). The method used to generate the 
grid is similar to that developed by Thomas and Middlecoff23, in which the mesh is generated 
by solving a system of the form: 

(13) 
(14) 

with the boundary conditions specified in terms of the values of ξ and η on the boundaries. 
Since it is desirable to perform all numerical computations in the transformed plane, the dependent 
and independent variables in (13) and (14) must be interchanged according to the following 
transformations: 

(15) 
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(16) 
where F is any function. With the aid of (15) and (16), (13) and (14) become: 

(17) 

(18) 
where a, β, and y are the transformation coefficients and J is the Jacobian of the transformation 
given by: 

(19a) 
(19b) 

The functions P and Q are coordinate control functions, which may be chosen so as to cause 
the coordinate lines to concentrate in certain parts of the domain. Here we take the combination 
of the functions developed by Thomas et al.23 and Thompson et al.24 as the control functions, i.e.: 

(20a) 
(20b) 

where: 
(21) 

is discussed in Reference 24 and the functionψ(ξ,η) is discussed in Reference 23. The boundary 
conditions for (17) and (18) are the values of the Cartesian coordinates x and y along the boundaries 
of the physical domain. 

The equations (17) and (18) are discretized by the finite difference method over the transformed 
plane based on second order differencing, and the resulting nonlinear algebraic equations are 
solved numerically by the successive over-relaxation (SOR) technique. The numerical results 
would give the Cartesian coordinates (x,y) at discrete points (<ξ,η) in the transformed domain. 

After the transformation of governing equations (6)-(8) into the computational domain, one 
gets: 

(22) 

(23) 

(24) 

where 
(25a) 
(25b) 

The transformed initial conditions are: 
(26) 

The transformed boundary conditions are: 
(27a) 
(27b) 
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where ηmax and ηmin are the outer and the inner boundaries in the transformed plane {Figure 2), 
respectively. 

Equations (22)-(25) are discretized by the finite difference method based on central difference 
scheme. The finite difference equation for the stream function was solved by the successive 
over-relaxation method, while the finite difference equations for the vorticity and energy equation 
were solved by the alternative direction implicit (ADI) method. The necessary number of grid 
points depend on the Rayleigh number and the aspect ratio of the cavity. Trial calculations were 
necessary to check computation accuracy. A grid of 65 x 30 nodal points was found to be 
sufficiently accurate. A body-fitted curvilinear mesh system with 65 x 30 nodal points was shown 
in Figure 3. All computations were performed with a time increment of At =1.0 x 10"4. 

The convergence criterion for steady state solution was met when the relative difference in 
two consecutive time steps satisfied a prescribed tolerance given by: 

(28) 

where/stands for Ψ, Ω, and T while m is the number of iteration. After the convergence criteria 
had been satisfied, computations were carried out for the local and mean Nusselt numbers at 
the plate which are defined as: 

(29) 

(30) 

RESULTS AND DISCUSSION 

The parameters shown in the governing equations (6)-(8) and boundary conditions (10)-(12) are 
C2/H2, H3/H2, W/H2, H/H2, corrugated pitch, corrugated angle θ, Ra, Pr, σ, ε and Da. A 
parameteric study was carried out for C = 0.55, ε = 0.9, Pr = 0.7, C2/H2 = 1/8, θ = 45°, H/H2 = 5, 
and pitch/H2 = 1/8, with H3/H2 ranging from 1.5 to 2, W/H2 from 2 to 5, Da from 10 - 4 to 10 -1, and 
Ram from 0 to 103. 
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Accuracy of the numerical solution 
Since no experimental or numerical solution to the problem of natural convection of a 

corrugated plate embedded in a porous medium has been reported in the literature, computations 
were first carried out for steady natural convection in a concentric porous annulus with Th* > Tc* 
corresponding to the case computed by Kaviany25 for R = 2, Ra = 106, Pr = 0.05 and C = 0.5 to 
check the accuracy of the numerical solution. Figure 4 shows that the Nusselt numbers (as a 
function of ε/Da) obtained in the present paper (solid line) are in good agreement with those 
obtained by Kaviany25. 

Steady state flow and heat transfer characteristics 
The steady state flow and heat transfer characteristics of a corrugated plate embedded in a 

porous cavity are presented in Figures 5-8. Figure 5 shows the steady isotherms (left) and 
streamlines (right) for a corrugated plate embedded in a porous cavity with W/H2 = H/H2 = 5, 
C2/H2 = 1/8, H1/H2 = H3/H2 = 2, pitch/H2 = 1/8, θ = 45°, Pr = 0.7, ε = 0/9 and Da = 10-4. As shown 
in Figure 5(a) for Ram=30, the heat transfer mechanism inside the cavity is conduction dominated, 
as evident from the weak circulation around the plate. The centres of the two counterrotating 
vortices are located slightly above the heated plate. The flow and temperature fields inside the 
cavity are almost symmetric with the vertical axis of the cavity. 

As the Darcy-Rayleigh number is increased to 100 (Figure 5b), the plume clearly rises above 
the plate, and the centres of the vortices move upward with increasing strength. Due to the 
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influence of the corrugated configuration, the flows on the right hand side of the plate are slightly 
slower than those on the left hand side. In this case, the flow pressure on the right portion of 
the cavity is larger than that on the left. As a result of the pressure difference, an extra horizontal 
driving force is created, which then acts on the fluid from right to left. As a result, the flow field 
is no longer symmetric with the vertical axis of the cavity. 

With further increases in Ram to 500 (Figure 5c), the strength of the plume rising above the 
plate is increased and consequently increases in the velocity of the rising fluid. Due to the higher 
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velocity, the thermal boundary layer which developed around the corrugated plate becomes 
thinner and the pressure difference between the right and left portion of the cavity is also 
increased. Thus, the distorsion of the streamlines and isotherms is more pronounced. When the 
Darcy-Rayleigh number is increased further to 1000 (Figure 5d), secondary vortices begin to 
appear at downstream of the heated plate in the upper corners of the porous cavity. This is due , 
to the viscous effect associated with the high velocities of the upward fluids. These secondary 
vortices cause the instability in the porous cavity. Figure 6 shows the isotherms (left) and 
streamlines (right) for a corrugated plate embedded in a porous cavity with the same parameters 
in the case of Figure5(d) instead of the aspect ratio of the cavity (W/H) is reduced from 1 to 
0.4 and Ram is reduced from 1000 to 500. In this figure, secondary vortices also appeared. Thus, 
it can be concluded that the value of Ram for appearing a secondary vortex is reduced for a 
smaller aspect ratio of the cavity (W/H). And the instability is increased with decrease in the 
aspect ratio of the cavity. 

Figure 7 shows the effect of plate position on the steady mean Nusselt number for a corrugated 
plate. In this figure, the results are computed by varying the value of H3/H2 and keeping the 
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other parameters with W/H2 = H/H2 = 5. The results shown that is decreased if the plate is 
moved downward along the vertical axis of the cavity. 

The effects of Darcy number on the steady average Nusselt number as a function of the 
Darcy-Rayleigh number are shown in Figure 8. From this figure, it can be concluded that the 
steady mean Nusselt number increases with decreasing in Darcy number when the other 
parameters are fixed. 

Figure 9 presents the effect of aspect ratio of the cavity on the steady mean Nusselt number 
for a corrugated plate and a flat plate embedded in a porous cavity. For a corrugated plate 
(solid lines), the steady mean Nusselt number increases as the aspect ratio is reduced when the 
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Darcy-Rayleigh number is less than 550, while there is an opposite effect as Darcy-Rayleigh 
number exceeds 550. 

Transient characteristics 
The numerical results for the transient flow and heat transfer characteristics are presented in 

Figures 10 and 11. Figure 10 shows the time evolution of the flow and temperature fields for 
Ram = 500 at dimensionless time of t = 0.01, t = 0.1, t = 0.3, t =0.4 and t = 0.5. The effect of the 
corrugated shape in vortices generation is clearly depicted in this figure. As the time progresses, 
the vortices move upward and transport the energy far away from the heated plate. Furthermore 
the steamlines and isotherms in Figure 10(d) (t = 0.5) are almost the same, indicating that the 
flow reaches the steady state at t = 0.4. 

The transient behaviour of the mean Nusselt numbers for a corrugated plate with 
W/H2 = H/H2 = 5, C2/H2 = 1/8, H1/H2 = H3/H2 = 2, θ = 45°, pitch/H2 = 1/8, σ = 3, Pr = 0.7, ε = 0.9, 
and Da = 10-4, at different Darcy-Rayleigh number are shown in Figure 11(a). It is shown that 
the transient mean Nusselt number increases with increase in the Darcy-Rayleigh number. 
Initially, the sharp temperature gradients between the heat plate and porous medium are 
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responsible for a rapid rate of heat transfer and their corresponding high Nusselt numbers. As 
shown in Figure 11(a), for Ram ≤ 500, the Nusselt number asymptotically approaches a steady 
state value. As Ram increases to 1000, the Nusselt number oscillates with a very small amplitude. 
The oscillation continues to t = 0.09 and then keeps at a stable value until t = 0.18. As time increases 
to r>0.18, oscillation occurs again and the Nusselt number finally approaches a stable value. 
With further increases in Ram, the frequency of these oscillations increases and no stable solution 
can be obtained again. 

COMPARISON OF A CORRUGATED PLATE WITH A FLAT PLATE 

In order to see the corrugated configuration effect on the flow and heat transfer characteristics, 
computations were performed with Pr = 0.7, ε = 0.9, and plate aspect ratio (C2/H2) = 1/8 at various 
Darcy-Rayleigh numbers and cavity aspect ratios. 

The computational results are presented in Figure 9 and Figures 11-13. Figure 9 shows the 
effect of the cavity aspect ratio on the steady mean Nusselt number for both a corrugated plate 
and a flat plate embedded in a porous cavity. As mentioned earlier, for Ram < 550, the steady 
mean Nusselt number for a corrugated plate is increased as the aspect ratio of the cavity (W/H) 
is reduced from 1 to 0.4 while keeping the value of H/H2 at 5, and an opposite effect is obtained 
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as Ram > 550. For a flat plate, however, the steady mean Nusselt number always decreases with 
decreasing in the value of W/H. This is due to the fact that the flow field is influenced by the 
corrugated configuration. Figures 11(a) and 11(b) present the typical transient Nusselt numbers 
of the corrugated plate and flat plate respectively. The results are obtained with W/H2 = H/H2 = 5, 
C2/H2 = l/8, H1/H2 = H3/H2 = 2, σ = 3, Pr = 0.7, ε = 0.9, and Da = 10-4. It can be seen that, for 
both plates, the transient behaviour of the Nusselt number is very stable for Ram < 1000. As Ram 
increases to 1000, the transient Nusselt number of a corrugated plate begins to oscillate with a 
small amplitude as previously discussed, while that of a flat plate keeps in stable. 

Figures 12(a) and (b) show the isotherms (left) and streamlines (right) for a flat plate embedded 
in a porous cavity with W/H2 = H/H2 = 5, C2/H2 = 1/8, H1/H2 = H3/H2 = 2, Pr = 0.7, ε = 0.9, and 
Da = 10 -4 at Ram= 1000 and 100, respectively. Comparing them with Figure 5, one can see that 
the isotherms and streamlines, for a flat plate, are always symmetric with respect to the vertical 
axis of the cavity, while those for a corrugated plate are not symmetric with this vertical axis. 

The variations of the steady local Nusselt numbers on the flat surface (left surface) of 
a corrugated plate with Da = 10-4, ε = 0.9, and Pr = 0.7, at Ram = 10, 100 and 500 for 
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W/H2 = H/H2 = 5 and W/H2 = H/H2 = 2 are presented in Figures 13(a) and 13(c), respectively. 
The results show that the local Nusselt number increases with increase in Darcy-Rayleigh 
number. Comparing these two figures, we see that the local Nusselt number decreases with 
decreasing in aspect ratio of the cavity. The discrepancy is more pronounced at a larger Ram. 
The computational results for a flat plate with the same parameters are shown in Figures 13(b) 
and 13(d).Figure 13(b) shows the steady local Nusselt number on the left surface for a flat 
plate with W/H = 1 while Figure 13(d) shows the results for a flat plate with W/H = 2/5. It shows 
that the variation tendency of the steady local Nusselt number for both a corrugated and a flat 
plate is the same. The results show that, the local Nusselt number, for both plates, has a maximum 
value at the stagnation point (lower left corner of the plate) then decreases monotonously along 
the plate surface to the position leading to the top of the plate and with a slight increase at 
the separation point. Comparing the four figures in Figure 13, it shows that the local Nusselt 
numbers of a corrugated plate are greater than those for a flat plate. These figures also show 
that the local Nusselt number increases with increase in Darcy-Rayleigh number. 

Effects of inertia and boundary (viscous) terms 

Figure 14 shows the inertia and boundary (viscous) effects on (where is the Nusselt 
number for heat conduction) for a corrugated plate with W/H2 = H/H2 = 5,θ = 45°, pitch/H2 = 1/8, 
C2/H2 = 1/8, Pr = 0.7, and ε = 0.9 at different values of Ram. The results are obtained based on 
four different models, including the pure Darcy, Brinkman-Darcy, Forchheimer-Darcy, and 
Brinkman-Forchheimer—Darcy equations. As indicated in the figure, the Nusselt number is the 
highest for the model with Darcy's law while the Nusselt number is smallest for the model with 
extended Brinkman-Forchheimer-Darcy equation. Note that the curves begin to deviate from 
unity between Ram = 20 and 30 depending on the particular model used. These are the critical 
Rayleigh numbers for the onset of free convection for a corrugated plate in a porous cavity. 
From this figure, it can be concluded that both the inertia and boundary effects tend to reduce 
the heat transfer rate, but the effect of inertia term is more prominent than that of boundary 
term. Both the inertia and boundary effects are significant after the free convection is predominant, 
and should be considered simultaneously at a large Darcy-Rayleigh number. 
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CONCLUDING REMARKS 

The problem of non-Darcian transient natural convection for a corrugated plate embedded in 
an enclosed porous medium is studied numerically. The extended Brinkman-Forchheimer-Darcy 
equations were used as the governing equations and were solved the body-fitted coordinates by 
the finite difference method. The following conclusions can be drawn fron the present study: 

1 For a corrugated plate, the flow and temperature fields are almost symmetric with the 
vertical axis of the enclosure as the heat transfer is dominated by conduction mode, and 
the flow fields are no longer symmetric with respect to this vertical axis after the onset of 
free convection. The discrepancy increases with increase in Ram. 

2 For a corrugated plate, the transient Nusselt number begins to oscillate with a very small 
amplitude as Ram is increased to 1000. With further increase in Ram, the frequency of 
oscillation increases and no stable solution can be obtained. 

3 The heat transfer rate is decreased as the plate position is changed downward along the 
vertical axis of the enclosure. 

4 For a fixed Ram and aspect ratio of the cavity, the overall heat transfer rate is increased 
as Darcy number is decreased. 

5 The steady mean Nusselt number for a corrugated plate increases with decreasing in the 
aspect ratio of the cavity as the Darcy-Rayleigh number is less than a critical value (550), 
and the opposite result is obtained as the Darcy-Rayleigh number is greater than this 
critical value. The steady Nusselt number for a flat plate, however, increases with the aspect 
ratio of the cavity at all values of Ram. 

6 The local Nusselt number has a maximum value at the stagnation point, and decreases 
monotonously to the position near the separation point. 

7 Steady state is reached at a dimensionless time of t = 0.4 for σ = 3. 
8 The overall heat transfer rate for a corrugated plate, for fixed parameters, is greater than 

that for a flat plate. 
9 The value of Ram for beginning to appear a secondary vortex for a corrugated plate 

embedded in a porous cavity decreases with decrease in aspect ratio of the cavity. 
10 Both the inertia and boundary (viscous) terms have the effect of reducing the heat transfer 

rate and are significant after the free convection is predominant. 
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